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Overview

• Some quick motivations

• Galileons - an overview

• Multi-Galileons and Higher Co-Dimension Branes

• Galileons on Curved Spaces - Cosmological Backgrounds

• Comments on ongoing work

• Conclusions.
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Motivations
• Scalar fields appear useful in particle physics and are ubiquitous in cosmology

• Used to break the electroweak symmetry, solve the strong CP problem, 
  inflate the universe, accelerate it at late times, ...

• In most incarnations, the sweet properties of these scalars are offset by their
  tendency to be most unruly in the face of quantum mechanics.

• Attempts to do away with scalars for some of these tasks, such as modifying 
  gravity, often yield scalars in any case, in limits, or as part of the construction.

• Galileons are an intriguing class of scalars that may have a shot at 
  addressing some of these problems, and perhaps most interestingly, are tied to 
  attempts to modify gravity such as massive gravity - you will hear much more 
  about this soon!.

• We’ll see - too early to know if these will be useful or not - but it is turning 
  out to be great fun trying.
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The Decoupling Limit (of, e.g. DGP)

M4, M5 ! 1 kept finite

Very special symmetry, inherited from combination of:
• 5d Poincare invariance, and
• brane reparameterization invariance

�(x) ! �(x) + c+ bµx
µ

The Galilean symmetry!

Much of interesting phenomenology of DGP captured in
the decoupling limit:

Only a single scalar field - the brane bending mode - 
remains
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Beyond DGP

• Seems natural to consider extending to higher dimensions
   and to other models
• Several potential advantages of this

• Might cure some of the ghost problems

• Observations - stringent constraints on DGP model. 
  In higher dimensions modifications to Friedmann   
  equation should be milder - allow wider param range

• Degravitation: gravity acts as a high-filter, suppressing 
contribution of vacuum energy to gravitational field. Too 
weak in DGP, more hopeful in D>5.

Gµ� = 8�GTµ� G�1(⇤)Gµ� = 8�Tµ�
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Galileons

(Nicolis, Rattazzi, & Trincherini 2009)

Can consider this symmetry as interesting in its own right
• Yields a novel and fascinating 4d effective field theory
• Relevant field referred to as the Galileon  

There is a separation of scales 
• Allows for classical field configurations with order 
  one nonlinearities, but quantum effects under control.   
• So can study non-linear classical solutions.
• Some of these are very important (Vainshtein effect)

Computing Feynman diagrams - terms of the galilean 
form cannot receive new contributions! More soon.

Luty, Porrati, Ratazzi (2003); Nicolis, Rattazzi (2004)

L1 = ⇡ L2 = (@⇡)2 L3 = (@⇡)2⇤⇡

Ln+1 = n�µ1�1µ2�2···µn�n (⇤µ1⇥⇤�1⇥⇤µ2⇤�2⇥ · · · ⇤µn⇤�n⇥)



Mark Trodden, University of Pennsylvania
Galileons, Generalizations & Close Relatives

Seminar
Fermilab, 3/19/2012

The Vainshtein Effect
Consider, for example, the DGP cubic term, coupled to matter

L = �3(@⇡)2 � 1
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Now look at spherical solutions around a point mass

Looking at a test particle, strength of this force, compared to gravity, is then

So forces much smaller than gravitational strength within the Vainshtein
radius - hence safe from 5th force tests.
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The Vainshtein Effect
Suppose we want to know the the field that a source generates within the 
Vainshtein radius of some large body (like the sun, or earth)

Perturbing the field and the source

yields

⇡ = ⇡0 + ', T = T0 + �T,

L = �3(@')2 +
2
⇤3
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Thus, if we canonically normalize the kinetic term of the perturbations, we 
raise the effective strong coupling scale, and, more importantly, heavily
suppress the coupling to matter!
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Regimes of  Validity
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of a theory

The usual linear, classical
regime of a theory

A new classical regime, with
order one nonlinearities
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To be Specific ...

Ln+1 = n�µ1�1µ2�2···µn�n (⇤µ1⇥⇤�1⇥⇤µ2⇤�2⇥ · · · ⇤µn⇤�n⇥)

�µ1�1µ2�2···µn�n ⇥ 1

n!

X

p

(�1)p �µ1p(�1)�µ2p(�2) · · · �µnp(�n)

The Galilean terms take the form

• tensor is anti-symmetric in μ indices, 
• anti-symmetric in ν indices, and 
• symmetric under interchange of any μ, ν pair with any 
   other

• Only first n of galileons terms non-trivial in n-
   dimensions. 
• In addition, the tadpole term, π, is galilean invariant - 
   include as the first-order galileon.
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Interesting Mathematical Aside

The single field Galileon constitutes an example of what is
known to mathematicians as an Euler Hierarchy

[Thanks to David Fairlie]

Suppose have Lagrangian only depending on derivative:

L1 = L1(�̇)

Ln = Ln�1En�1

L2 = L1E1

E1 = 0

E2 = 0

E3 = 0L3 = L2E2

Second order equations of motion, and series eventually
terminates, as the Galileon one does

....

(total derivative)



Mark Trodden, University of Pennsylvania
Galileons, Generalizations & Close Relatives

Seminar
Fermilab, 3/19/2012

DBI Galileons and Conformal Galileons

�⇡ = c + bµx

µ � b

µ
⇡@µ⇡

Instead of extending Poincare symmetry by galilean one, might seek to extend
to other useful symmetries. Making relativistic:

makes full symmetry group P(4,1), spontaneously broken to P(3,1).
Again get n terms in n-dimensions, and the galileons in the small field limit

DBI GALILEONS

If we instead extend to the conformal group

�⇡ = c! �⇡ = c� cx

µ
@µ⇡
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µ ! �⇡ = bµx

µ + @µ⇡

✓
1
2
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µ
x
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◆

makes full symmetry group SO(4,2), spontaneously broken to P(3,1).
Again get n terms in n-dimensions. e.g.

CONFORMAL GALILEONS
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Constructing Galileons: Probe Branes

�P 0
⇡ = �P ⇡ + �g⇡ = �!

µ
⌫x

⌫
@µ⇡ � ✏

µ
@µ⇡ + !

5
µx

µ � !

µ
5⇡@µ⇡ + ✏

5

A Poincare transformation ruins this choice, but: a simultaneous brane
reparametrization restores it, so that the combination

is still a symmetry

What remains is to construct actions

�P XA = !A
BXB + ✏A

�gX
A = ⇠µ@µXA

X

µ(x) = x

µ
, X

5(x) ⌘ ⇡(x)

4D

5D
X

A(xµ)

Embed a flat 3-brane in a 5d flat bulk
Symmetries are:

5d Poincare invariance

Brane reparametrization
invariance

Now pick a gauge

[de Rham & Tolley]
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Actions in the Probe Brane Approach

The most general requirement is to us diffeomorphism invariant quantities
on the brane.

S =
Z
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4
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But we also want second order equations of motion. This restricts the form
severely - to the Lovelock invariants and their associated Gibbons-Hawking-
York boundary terms (Myers terms).

For example:
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This gives a DBI term, which in the small-field limit gives the second galileon
term - the kinetic term.



Mark Trodden, University of Pennsylvania
Galileons, Generalizations & Close Relatives

Seminar
Fermilab, 3/19/2012

Multi-field Galileons and
Higher co-Dimension Branes  
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Higher co-Dimension Probe Branes
[K. Hinterbichler, M.T., D. Wesley,  Phys. Rev. D82 (2010) 124018.]

With some work, can extend probe brane
construction to multiple co-dimensions

X

µ(x) = x

µ
, X

I(x) ⌘ ⇡

I(x)

gµ⌫ = ⌘µ⌫ + @µ⇡I@⌫⇡I

Induced Metric on Brane

S =
Z

d

4
x

p
�gF

�
gµ⌫ ,rµ, R

i
jµ⌫ , R

⇢
�µ⌫ , K

i
µ⌫

�����
gµ⌫=⌘µ⌫+@µ⇡I@⌫⇡I

More general version of action de Rham & Tolley wrote

X

A(xµ)

⇡I

Ki
µ⌫Technical question. Main differences: extrinsic curvature         carries an extra 

index, associated with orthonormal basis in normal bundle to hypersurface. 

�j
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Higher co-Dimension Probe Branes

S =
Z

d
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Covariant Derivative

In co-dimension1, for 2nd order equations, use Lovelock terms and associated 
boundary terms. Here, for 4d brane, prescription depends on co-dimension

Extrinsic curvature

Intrinsic Curvature

Normal Bundle Curvature

1. If N (not = 3) is odd, obtain dimensional continuation of Gibbons-Hawking
    and Myers terms, with the extrinsic curvature replaced by distinguished 
    normal component of K.
2. If N = 3, have additional terms involving the extrinsic curvature 
    (and boundary term is not simply dimensional continuation of Myers term.)
3. If N (not = 2) is even, boundary term includes only brane cosmological 
    constant and induced Einstein-Hilbert term. 
4. If N = 2, boundary terms include only brane cosmological constant, and

LN=2 =
p
�g

�
R[g]� (Ki)2 +Ki

µ⌫K
µ⌫
i
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The Multi-Galileon Limit
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As before, find combined symmetry in small-field limit under which π invariant:
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I
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Multiple Galileons New SO(N) symmetry

In decoupling limit get a unique multi-Galileon theory, with single coupling, from 
the brane Einstein-Hilbert action plus a brane cosmological constant:

(In higher dimensions, more terms are possible)

Breaking the SO(N) get a description 
more appropriate to, for example, 
cascading gravity.

6D4D

5D
X

A(xµ)

[K. Hinterbichler, M.T., D. Wesley,  Phys. Rev. D82 (2010) 124018; 
                    A.Padilla, P.Saffin, S.Zhou, JHEP 1012, 031 (2010).; C. Deffayet, S. Deser, G. Esposito-Farese, Phys.Rev. D82 (2010) 061501 ]

http://inspirebeta.net/author/Deffayet%2C%20C.?recid=863573&ln=en
http://inspirebeta.net/author/Deffayet%2C%20C.?recid=863573&ln=en
http://inspirebeta.net/author/Deser%2C%20S.?recid=863573&ln=en
http://inspirebeta.net/author/Deser%2C%20S.?recid=863573&ln=en
http://inspirebeta.net/author/Esposito-Farese%2C%20G.?recid=863573&ln=en
http://inspirebeta.net/author/Esposito-Farese%2C%20G.?recid=863573&ln=en
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Nonrenormalization!
Remarkable fact about these theories (c.f SUSY theories)

Expand quantum effective action for the classical field about expectation value

...
1PI

p(1)

ext

p(2)

ext

p(m)

ext

p(1)
int

p(2)
int

p(n�m)
int

...

. . .

Can even add a mass term and remains technically natural

The n-point contribution contains at least 2n powers of external momenta:
cannot renormalize Galilean term with only 2n-2 derivatives. 
With or without the SO(N), can show, just by computing Feynman diagrams, 
that at all loops in perturbation theory, for any number of fields, terms of the 
galilean form cannot receive new contributions.  

[K. Hinterbichler, M.T., D. Wesley,  Phys. Rev. D82 (2010) 124018]
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Coupling to Matter & Stability

For a single Galileon, coupling πT to an external source respects the symmetry

For multi-Galileons can’t have this symmetry. Simple extension
isn’t invariant.
Simplest invariant coupling 
has no nontrivial spherically-symmetric solutions around static sources

⇡I⇡IT

@µ⇡
I@⌫⇡

ITµ⌫

But for example, looking at the simplest SO(N) non-derivative interaction

L =
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2
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BUT: exhibits superluminality and instability. If these are to make sense, better
couplings to matter are needed. 

3

As r ranges from zero to infinity, the left hand side is
monotonic, and is positive or negative depending on the
sign of P ⌅

�
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⇥
⇤(0). For there to be a continuous so-

lution for y as a function of r, the left hand side must be
invertible when it is positive (negative). For a solution
to exist, this requires (for non-trivial ⇥)

⇥ > 0 . (12)

Thus y is also positive (negative), is monotonic with r,
and ranges from zero to (negative) infinity as r ranges
from infinity to zero. This in turn implies that d⇤/dr
does not cross zero, and hence ⇤ is monotonic.

Equation (11) yields a solution for y, and hence d⇤/dr,
as a function of r and the parameters of the theory. In-
tegrated from r = 0 to infinity, this will give a relation
between ⇤(0) and the asymptotic value of the field ⇤(⇤).
The asymptotic field value is essentially a modulus of
the theory — it will be set by whatever cosmological ex-
pectation value is present. It is a physically meaningful
parameter as it a�ects the coupling to the source by de-
termining ⇤(0).

Near the source, where the non-linear term dominates,
the solution is linear in r,
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whereas far from the source, where the linear term dom-
inates, the solution goes like 1/r,
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where the transition between these regimes occurs at the
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⇤
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. (15)

Note that this crossover radius, and hence the distance
at which non-linearities become important, depends on
the modulus ⇤(0). The equation of motion for ⇤(r) is
readily solved numerically, and the solution obtained is
plotted schematically in Fig. 1.

IV. PERTURBATIONS: STABILITY AND
SUBLUMINALITY

While the existence of static, spherically-symmetric
configurations is encouraging, there are, of course, other
important checks that our solution must pass to be phys-
ically viable. Specifically, following [5], we must study
the stability of these spherically symmetric solutions and
to determine the speed at which fluctuations propagate,
since superluminal propagation can be an obstacle to
finding an ultraviolet completion of the e�ective the-
ory [33].
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FIG. 1: Schematic sketch of the solution for �(r).

We expand the field in perturbations around the back-
ground solution ⇤I

0 ,

⇤I = ⇤I
0 + �⇤I . (16)

Away from the source, the linearized equations of motion
for the perturbations are of the form
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Applying the implicit function theorem to the function
F (y, r) = y + 2⇥y3 � M
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[Andrews, Hinterbichler, Khoury, & M.T., Phys.Rev. D83 (2011) 044042 ]

http://inspirebeta.net/author/Andrews%2C%20Melinda?recid=866239&ln=en
http://inspirebeta.net/author/Andrews%2C%20Melinda?recid=866239&ln=en
http://inspirebeta.net/author/Hinterbichler%2C%20Kurt?recid=866239&ln=en
http://inspirebeta.net/author/Hinterbichler%2C%20Kurt?recid=866239&ln=en
http://inspirebeta.net/author/Khoury%2C%20Justin?recid=866239&ln=en
http://inspirebeta.net/author/Khoury%2C%20Justin?recid=866239&ln=en
http://inspirebeta.net/author/Trodden%2C%20Mark?recid=866239&ln=en
http://inspirebeta.net/author/Trodden%2C%20Mark?recid=866239&ln=en
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Generalized Galileons on Curved 
Geometries: Cosmological Spaces
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Galileons on General Backgrounds

Main point:
• Can extend probe brane construction to more general geometries. e.g. 
   other maximally-symmetric examples

4D

5D
X

A(xµ)

�KXA = aiKA
i (X) + aIKA

I (X)

(�K + �g,comp

)⇡ = �a

i
k

µ
i (x)@µ⇡ + a

I
K

5

I (x,⇡)� a

I
K

µ
I (x,⇡)@µ⇡

ds

2 = d⇢

2 + f(⇢)2gµ⌫(x)dx

µ
dx

⌫Bulk

ḡµ⌫ = f(⇡)2gµ⌫ +rµ⇡r⌫⇡Induced 
on Brane

Bulk 
Killing 
Vectors

Galileons with symmetry

[Goon, Hinterbichler, M.T., Phys. Rev.Lett. 106, 231102 (2011). 
 Goon, Hinterbichler, M. T., JCAP 1107, 017 (2011).] 
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The Maximally-Symmetric Taxonomy

AdS4

AdS5

M5

M4 dS4

dS5

Small field limit

AdS galileons normal galileons dS galileons

DBI galileons

Conformal

DBI galileons

AdS
dS DBI galileons

type I

type II

type III

dS DBI galileons

dS DBI galileons

DBI galileons

Brane metric
A

m
bi

en
t 

m
et

ri
c

so(4, 2)! so(3, 2) so(4, 2)! p(3, 1) so(4, 2)! so(4, 1)

p(4, 1)! p(3, 1) p(4, 1)! so(4, 1)

so(5, 1)! so(4, 1)

f(�) = R sinh2 (⇥/R)f(�) = R cosh

2
(⇥/R)

f(�) = R sin2 (⇥/R)

f(�) = �f(�) = 1

f(�) = e��/R

Potentially different Galileons corresponding to different ways to foliate a 
maximally symmetric 5-space by a maximally symmetric 4-d hypersurface
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Galileons on Gaussian Normal Foliations

Can we foliate a 5-d space in an interesting way such that the resulting theory 
describes galileons with the appropriate symmetries to propagate on a 
Friedmann, Robertson-Walker (FRW) background?

[Goon, Hinterbichler, M.T., JCAP 1112 (2011) 004 [1109.3450 [hep-th]]]

• Can actually do a little better - can do a general Gaussian Normal foliation

GABdX
A
dX

B = fµ⌫(x,w)dx
µ
dx

⌫ + dw

2 ḡµ⌫ = fµ⌫ + @µ⇡@⌫⇡

Induced 
on Brane
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Embedding 4d FRW in 5d Minkowski
ds2 = �

�
dY 0

�2
+
�
dY 1

�2
+

�
dY 2

�2
+

�
dY 3

�2
+
�
dY 5

�2

S(t, w) ⌘ a� ȧw

ds̃

2 = �n

2(t, w)dt2 + S

2(t, w)�ijdx
i
dx

j

Induced Metric on Brane



Mark Trodden, University of Pennsylvania
Galileons, Generalizations & Close Relatives

Seminar
Fermilab, 3/19/2012

Galileons on Cosmological Backgrounds

The form of the first two Lagrangians, for example, is

and the symmetries are

These describe covariant
versions of Galileons,
naturally propagating on
FRW backgrounds.

[Goon, Hinterbichler, M.T., JCAP 1112 (2011) 004 [1109.3450 [hep-th]]]
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Simple Solutions and Stability

Expand Lagrangians to second order in π, and integrate by parts (a lot)

L1 = a3⇡ � 1

2

✓
äa3

ȧ
+ 3ȧa2

◆
⇡2 +O(⇡3)

L2 = (3a2ȧ+
a3ä

ȧ
)⇡ +

1

2
a3⇡̇2 � 1

2
a(~r⇡)2 � 3

�
äa2 + ȧ2a

�
⇡2 +O(⇡3)

L3 = 6(aȧ2 + a2ä)⇡ + 3ȧa2⇡̇2 �
✓
2ȧ+

aä

ȧ

◆
(~r⇡)2 � 3

�
3ȧäa+ ȧ3

�
⇡2 +O(⇡3)

L4 = 6(ȧ3 + 3aȧä)⇡ + 9ȧ2a⇡̇2 � 3

✓
ȧ2

a
+ 2ä

◆
(~r⇡)2 � 12ȧ2ä⇡2 +O(⇡3)

L5 = 24ȧ2ä⇡ + 12ȧ3⇡̇2 � 12
ä2ȧ

a
(~r⇡)2 +O(⇡3)

L =
5X

n=1

cnLn

Write

and just for example, look for combinations for which 
π=0 is a solution
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Fix a(t) = (t/t0)
↵ π=0 solutions exist for ↵ = 1, 3/4, 1/2, 1/4

Expanding to quadratic order about solution yields 
(note - no higher derivatives - one degree of freedom!)

L =
1

2
A(a(t), cn)⇡̇

2 � 1

2
B(a(t), cn)(~r⇡)2 � 1

2
C(a(t), cn)⇡

2

Either marginally stable, or a tachyonic instability, with tachyon timescale 
~1/H.   Therefore, solutions stable to fluctuations over time scales shorter 
than the age of the universe. 

[Agrees with Burrage, de Rham, and Heisenberg, JCAP 1105 (2011) 025,  arXiv:1104.0155.]
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Galileon-Like Limit
In maximally symmetric case have small field limits which simplify 
Lagrangians (To obtain, form linear combinations of original Lagrangians, s.t.  
perturbative expansion of nth one around constant background order π^n) 
e.g. flat brane in a flat bulk gives flat space galileons.

Can’t do same here - appears to be due to maximal symmetry, but can 
check our results for dS limit:

ḡµ⌫ = (�1 +H⇡)2 g (dS)
µ⌫ + @µ⇡@⌫⇡Induced Metric on Brane

⇡̃ = �1 +H⇡ x̂µ = Hxµ

Now redefine the field and change coordinates

Resulting theory is one of the ones I mentioned earlier, and the small field 
limit is the resulting Galileon on a dS background - reassuring!
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Applications

•At this point there are a reasonably large number of fledgling 
attempts to apply these ideas to cosmology, field theory, and 
gravity

- Early cosmology and inflation. Galileon inflation - 
   radiatively stable - operators protected by covariant    
   version of Galileon symmetry.  Potential test via 
   nongaussianity
- Galilean genesis (alternative to inflation); and in general as
   a way to violate the null energy condition.
- A possible well-behaved way to modify gravity, perhaps in
  the infrared (degravitation?). See also Fab Four
- Supersymmetrization
- An appearance in the decoupling limit of some massive 
   gravity theories

(e.g. Burrage, de Rham, Seery and Tolley 2010)
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Summary

• Higher dimensional models are teaching us about entirely 
   novel 4d effective field theories that may be relevant to
   cosmology
• We have shown how to derive the scalar field theories    
  corresponding to Galileons propagating on fixed curved 
  backgrounds (maximally symmetric and FRW examples).
• Have also shown how to extend the probe brane 
   construction to higher co-dimension branes, yielding multi-
   Galileon theories. 
• Couplings to matter and stability still need investigating in
   generality.
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Current Work & the Future
•Galileons are Wess-Zumino terms! In d dimensions are d-
  form potentials for (d+1)-forms which are non-trivial co-
  cycles in Lie algebra cohomology of full symmetry group 
  relative to unbroken one. Slightly different stories for DBI
  and conformal Galileons.

•Our models tell you what Galileons do propagating on  
  cosmological spaces. What about driving cosmology? Need 
  dynamical gravity for that, and we think we know how to do 
  this (ongoing work w/ Hinterbichler, Khoury & Gabadadze).

• What lies behind the nonrenormalized Lagrangians?

•Many of the questions I raised regarding cosmology.  
Thank You!

[Goon, Hinterbichler, Joyce & M.T.,  arxiv:1203.3191 [hep-th])


